228 research outputs found

    On the characterisation of a Bragg spectrometer with X-rays from an ECR source

    Get PDF
    Narrow X-ray lines from helium-like argon emitted from a dedicated ECR source have been used to determine the response function of a Bragg crystal spectrometer equipped with large area spherically bent silicon (111) or quartz (101ˉ\bar{1}) crystals. The measured spectra are compared with simulated ones created by a ray-tracing code based on the expected theoretical crystal's rocking curve and the geometry of the experimental set-up.Comment: Version acceptee (NIM

    On-line Learning of Prototypes and Principal Components

    Get PDF

    Molecular epidemiology of SARS-CoV-2: a regional to global perspective

    Get PDF
    Background After a year of the global SARS-CoV-2 pandemic, a highly dynamic genetic diversity is surfacing. Among nearly 1000 reported virus lineages, dominant lineages such as B.1.1.7 or B.1.351 attract media attention with questions regarding vaccine efficiency and transmission potential. In response to the pandemic, the Jena University Hospital began sequencing SARS-CoV-2 samples in Thuringia in early 2020.Methods Viral RNA was sequenced in tiled amplicons using Nanopore sequencing. Subsequently, bioinformatic workflows were used to process the generated data. As a genomic background, 9,642 representative SARS-CoV-2 genomes (1,917 of German origin) were extracted from more than 300.000 genomes.Results In a comprehensive bioinformatics analysis, we have set Thuringian isolates in the German, European and global context. In Thuringia, a largely rural German region without an international airport and a population density below the German average, we discovered many of the common “EU lineages”. German samples are scattered across eight major clades, and Thuringian samples occupy four of them.Conclusion The rapid emergence and spread of novel variants are of great concern as these lineages could transmit more efficiently, evade current vaccine efforts or undermine diagnostic test accuracy. To anticipate and mitigate these threats, a continuous molecular surveillance is essential.Key messagesBioinformatics analysis of 1,917, 4,251, and 3,474 SARS-CoV-2 genomes from Germany, the EU (except Germany), and non-EU, respectively, subsampled from more than 300,000 public genomes and placed in the context of Thuringian sequencesConstant antigenic drift for SARS-CoV-2 and no clear pattern or clustering is visible in Thuringia based on the current number of samplesCurrently over 100 described lineages are identified in Germany and only a subset (9) are detected in Thuringia so far, most likely due to genetic undersamplingFrom a national perspective, it is likely that high-frequency lineages, which are currently spreading throughout Europe, will eventually also reach ThuringiaSystematic and dense molecular surveillance via whole-genome sequencing is needed to detect concerning new lineages early, limit spread and adjust vaccines if necessaryCompeting Interest StatementThe authors have declared no competing interest.Funding StatementThe work is funded by the German Ministry of Education and Research (BMBF), grant number 01KX2021, and the Thuringian Region Government, grant number TZUZI82094.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:not applicableAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data is available on GISAID.Introduction Methods - Nanopore sequencing and genome reconstruction - Time tree creation Results - Most highly prevalent SARS-CoV-2 lineages in Germany detected in Thuringia - Genetic divergence and current lineage distribution Discussio

    On-line Learning of Prototypes and Principal Components

    Get PDF

    First measurement of kaonic helium-3 X-rays

    Get PDF
    The first observation of the kaonic 3He 3d - 2p transition was made using slow K- mesons stopped in a gaseous 3He target. The kaonic atom X-rays were detected with large-area silicon drift detectors using the timing information of the K+K- pairs of phi-meson decays produced by the DAFNE e+e- collider. The strong interaction shift of the kaonic 3He 2p state was determined to be -2+-2 (stat)+-4 (syst) eV.Comment: Accepted for publication in Phys. Lett.

    Pressure induced high-spin to low-spin transition in FeS evidenced by x-ray emission spectroscopy

    Full text link
    We report the observation of the pressure-induced high-spin to low-spin transition in FeS using new high-pressure synchrotron x-ray emission spectroscopy techniques. The transition is evidenced by the disappearance of the low-energy satellite in the Fe Kβ\beta emission spectrum of FeS. Moreover, the phase transition is reversible and closely related to the structural phase transition from a manganese phosphide-like phase to a monoclinic phase. The study opens new opportunities for investigating the electronic properties of materials under pressure.Comment: ReVTeX, 4 pages, 3 figures inserted with epsfig. minor modifications before submission to PR

    Characterization of low temperature metallic magnetic calorimeters having gold absorbers with implanted 163^{163}Ho ions

    Full text link
    For the first time we have investigated the behavior of fully micro-fabricated low temperature metallic magnetic calorimeters (MMCs) after undergoing an ion-implantation process. This experiment had the aim to show the possibility to perform a high precision calorimetric measurement of the energy spectrum following the electron capture of 163^{163}Ho using MMCs having the radioactive 163^{163}Ho ions implanted in the absorber. The implantation of 163^{163}Ho ions was performed at ISOLDE-CERN. The performance of a detector that underwent an ion-implantation process is compared to the one of a detector without implanted ions. The results show that the implantation dose of ions used in this experiment does not compromise the properties of the detector. In addition an optimized detector design for future 163^{163}Ho experiments is presented
    corecore